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Abstract
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1 Introduction
Recent fluctuations in mortgage interest rates have called into question their effects on

housing asset prices. The primary channel linking the two in the existing literature is through

the “user cost” of housing, that is, the net flow cost of a unit of housing (e.g. Hendershott

and Slemrod, 1982; Gallin, 2008). As the theory goes, in equilibrium, if interest rates rise,

asset prices should fall, holding rental prices constant. However, this equilibrium correction

process can take a number of years, as prices and rents can be slow to adjust to changing

market fundamentals.

Interest rates may serve another role by affecting the speed by which prices adjust to long-run

fundamentals. In addition to linking rents and asset prices, the mortgage interest rate affects

the bindingness of debt service constraints, also called payment constraints (Greenwald,

2018).1 Mechanically, the mortgage interest rate determines the maximum loan amount a

borrower can afford under a fixed monthly payment.2 Accordingly, a constrained borrower

cannot increase housing expenditures as an unconstrained borrower would choose given the

simultaneous rise in user costs.3 It follows that if an area includes many such constrained

borrowers, the rate of equilibrium correction of house prices may be higher. On the other

hand, if an area contains few such borrowers, prices may adjust more slowly. In sum, interest

rates may affect not only the long-run equilibrium asset price of housing, but also the speed

of adjustment to the new long-run equilibrium by affecting the bindingness of borrowing

constraints.

This paper quantifies the effect of mortgage interest rate changes on house prices, consid-

ering effects to both long-run fundamental values and speeds of adjustment. Building on

1On the supply side, borrowing constraints can be discontinuities introduced by reg-
ulation, such as the Qualified Mortgage (QM) Rule in the United States, which
places limits on borrowing to 43% debt-service to income (DTI) each month in or-
der for a loan to qualify. See https://www.govinfo.gov/app/details/STATUTE-124/

STATUTE-124-Pg1376 and https://www.federalregister.gov/documents/2013/01/30/2013-00736/

ability-to-repay-and-qualified-mortgage-standards-under-the-truth-in-lending-act-regulation-z

for more details on different vintages of QM rules. Even without hard caps, extreme DTIs typically require
higher mortgage interest rates to compensate for default risk (Anenberg et al., 2019). Generally speaking,
at high DTI levels, the more costly it is to adjust the DTI further upward.

2For example, assume an interest-only loan and a $2000 monthly payment. The maximum loan amount
is then the perpetuity 1/r×2000×12, where for r = 3%, the maximum loan amount is $800,000; for r = 4%,
the maximum loan amount is $600,000; and so on.

3Typical estimates of the own-price elasticity of demand for housing are -0.5 to -0.8 (Albouy et al., 2016).
An elasticity of beyond -1.0 would be required for borrowing constraints not to be binding.
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McQuinn and O’Reilly (2008) and Oikarinen et al. (2018), I model house prices, incomes,

borrowing constraints, and mortgage interest rates in a cointegration framework, with house

prices driven by both short-run dynamics and convergence towards long-run economic fun-

damentals. After testing for the existence of this cointegrating relation, I show the nature of

a city’s long-run equilibrium depends on the elasticity of housing supply, and the speed of

adjustment to this long-run equilibrium depends on the degree to which borrowers are near

debt service-to-income (DTI) constraints.

Estimates from individual cities suggest long-run elasticities of house prices with respect

to interest rates between about -0.2 to -0.8. When the city-level estimates are fit to the

Wharton Land Use Regulatory Index of Gyourko et al. (2021), the most lightly regulated

cities have an average elasticity of -0.3 and the most tightly regulated cities have an average

elasticity of -0.6. This elasticity differential arises because demand changes induce greater

quantity responses in cities facing low constraints to development, with interest rates putting

less pressure on prices.

Payment constraints and the elasticity of housing supply are highly correlated across cities

and load multiplicatively onto the short-run interest rate elasticity, creating substantial het-

erogeneity in the dynamic effects of mortgage interest rate changes on house prices. The

largest short-run house price elasticities are found in areas with both housing supply con-

straints and DTI-constrained borrowers. For example, in a hypothetical supply-elastic,

payment-unconstrained city with 3% mortgage interest rates, the cumulative 3-year effect of

a permanent 0.25% (25 basis point) increase in interest rates is about -1.46%. On the other

hand, in a city facing both housing supply and mortgage credit constraints, the cumulative

effect on house prices is almost triple at -4.32%.

The functional form motivated by theory suggests nonlinearity in the effect of interest rate

changes, with lower base levels having larger effects than higher base levels for the same

percentage point change in rates. At the median supply elasticity and level of constrained

borrowers, a change in rates from 3% to 3.25% gives gives a cumulative -2.51% (partial)

house price change over 3 years, versus a 6% to 6.25% change giving a -1.28% change over

the same period.

Finally, there is some evidence of asymmetric effects. When house prices are below their
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long-run fundamental value, interest rate changes do not affect convergence speeds, with

prices converging at a flat 5% of the degree of disequilibrium per quarter. When house

prices are above fundamental values, convergence does not occur unless DTIs are high. Only

if the share of borrowers in a city with a back-end DTI ≥ 43 is 40% (the median rate

across cities in 2008 and the 95th percentile in 2021) or more does convergence approach

5% per quarter. The implication of this result is that house prices bubbles only seem to

revert to fundamentals once borrowers begin to face payment constraints, which are affected

by changes to interest rates, mortgage credit supply, or incomes. On the other hand, in

recovery periods, house prices will slowly but steadily recover their value over time as long

as economic fundamentals are strong.

This research contributes to at least three important literatures. The first concerns the effects

of mortgage interest rates on house prices. There are typically two approaches to modeling

this relation, either directly, or embedded within a user-cost framework. Direct estimates

have focused on cross-country studies (e.g. Muellbauer and Murphy, 1997; Shi et al., 2014)

and show country-specific effects of interest rates on house prices. Perhaps surprisingly, there

is little direct evidence in the literature of effects of mortgage interest rates on house prices in

the United States, with key papers finding no effect (e.g. Holly et al., 2010; Oikarinen et al.,

2018). Maclennan et al. (1998) argue that institutions affect pass-through of interest rates

to house prices, suggesting that some factor unique to the U.S. might diminish the effects.

Other studies, such as McQuinn and O’Reilly (2008) suggest that because house prices have

long cycles and interest rates fluctuate at high frequency, it is simply statistically difficult

to estimate a precise effect if the true effect were small. Recently, Gorea et al. (2022) show

using real estate listings data that monetary policy shocks affect house prices with little lag

by affecting list prices. When embedded in user-costs, Capozza et al. (2002), Gallin (2008),

and others have shown interest rates to affect house prices, but only insofar as they affect

the long-run fundamental house price level.

The second strand is the growing literature on interest rate pass through on the real economy

and heterogeneity across regions. Concerning mortgages, Di Maggio et al. (2017) show

declines in mortgage interest rates at ARM reset points increase consumption of consumer

durables, including automobiles. Beraja et al. (2019) show the Federal Reserve’s quantitative

easing policies induced differential rates of refinancing activity that are associated with a

region’s accumulated home equity, and this had effects on regional aggregate spending.
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The third investigates the effects of household finance circumstances and decisions on the

macroeconomy. Because payment constraints consider all household debts, there is a direct

effect of student loans and other substantial debt classes on interest rate pass-through to the

housing market. Auto loans, credit card debt, and student loan debt therefore all contribute

to monetary policy transmission to the housing market and beyond. For instance, Cloyne

et al. (2020) shows that in the UK, households with high levels of mortgage debt respond to

interest rate changes with changing consumption patterns. There is also the large literature

linking housing to the macroeconomy, including Mian et al. (2013) who show wealth shocks

brought about by house price declines led to reduced consumption in the Great Recession,

and Iacoviello (2005), who argues that monetary policy affects homeowners’ balance sheets

and can affect consumption through a housing wealth channel. Recently, Greenwald (2018)

models mortgage interest rates and housing within a DSGE model of the U.S. economy,

finding that payment-to-income ratios affect propagation of interest rate shocks. The present

research builds on this concept, layering onto this model heterogenous supply responses across

cities and empirically testing some of its key predictions. Finally, this research points to the

need for heterogeneous agent models of the macroeconomy (e.g. Mitman, 2016; Debortoli

and Gaĺı, 2017; Kaplan et al., 2018) in order to understand how a small number of marginal

agents may have an outsized effect on market price dynamics and other behaviors that are

relevant in aggregate.

2 Conceptual Framework
Housing markets in U.S. cities tend to be driven both by local characteristics, yet subject

to national cycles through propagation of macroneconomic shocks. Demand factors are

commonly though to drive short-run price fluctuations, with supply playing an important

role the longer the time horizon. In many locations, strong real estate price cycles are

common, while in others, dynamics are weaker. The model in this section attempts to

capture the fundamental price of housing in a particular city, that is, the long-run, location-

specific equilibrium to which prices will tend toward. This equilibrium is potentially unique

to a particular location in a particular time period, continuously evolving with drivers of

the fundamental price. In the literature, some housing market fundamentals include the

housing to population ratio, rents, incomes, user costs (including interest rates, property

taxes, insurance, and expected appreciation), credit availability, and other demand and

supply shifters (e.g. Muellbauer and Murphy, 1997). A key concept in this section is the

role of the marginal borrower, and how this borrower acts to set the market price (Duca

4 Larson — House Prices, Mortgage Interest Rates, and Payment Constraints



et al., 2011). This household typically borrows near income and leverage constraints, and

its presence in the market tends to affect the equilibrium price.

The starting point for the model in this section is McQuinn and O’Reilly (2008). Its focus

is bringing borrowing constraints, interest rates, and incomes into a simple model of hous-

ing supply and demand. The model represents the latent steady-state relation between the

variables to which actual variables will tend toward. The model’s purpose is not to model

perfectly the relation between all of the myraid costs and benefits of homeownership that are

certain to vary across individuals, cities, locations, and time periods. Rather, it is meant to

motivate the link between household borrowing and the price of housing that is modeled em-

pirically in later sections. For additional simplicity, assume all mortgages are infinitely lived,

and housing is financed exclusively through fixed-rate interest-only mortgages.4 All other

arguments in the user cost function, such as taxes, depreciation, and expected appreciation

per unit of housing, are assumed to be zero for simplicity.

The maximum amount a household can borrow B at time t is defined by the perpetuity below,

where K̄ is the maximum debt service fraction of income that can be spent on housing, Y

is income, and R is the mortgage interest rate, all at time t.

Bt =
∞∑
j=1

K̄tYt(1 +Rt)
−j (1)

After discounting the infinite sum of interest payments, the maximum loan amount can be

expressed as the following product.5

Bt = K̄t
Yt

Rt

(2)

Assuming this marginal borrower drives the market price, the maximum loan amount can

4This implies loans have a 100% loan-to-value (LTV) ratio. The marginal borrower in an area typically
is constrained by one or both of LTV or DTI. As Greenwald (2018) shows, LTV constraints tend not to
affect the price of housing unless DTI is also constrained. I leave consideration of LTVs and their empirical
interactions with DTI constraints to future research.

5For a numerical illustration, consider a maximum debt-service to income ratio of 40%, an income of
$100,000, and an interest rate of 4%. The maximum loan amount is $1,000,000, corresponding to $3,333 per
month.
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then be embedded into a simple downward-sloping (inverted) demand curve, where S is

housing supply and 1/µ is the own-price elasticity of demand for housing. Note this is

almost identical to the inverted demand equation for house prices from Duca et al. (2010).6

PD
t = BtS

−µ
t (3)

The supply curve is expressed as follows, where 1/ϕ is the own-price elasticity of housing

supply.

P S
t = Sϕ

t (4)

Substituting and taking logs (lowercase) yields the equilibrium price as a function of the

supply and demand elasticities and the maximum loan amount.

pt =
ϕ

ϕ+ µ
bt =

ϕ

ϕ+ µ
(k̄t + yt − rt) (5)

Note that in the short run, it is possible to assume ϕ approaches infinity, leading price changes

to be exclusively demand-driven. In the longer run, supply forces shape the responsiveness

of prices to changes in the economic fundamentals in the model— borrowing constraints,

incomes, and interest rates—with the effects of interest rates decreasing with the elasticity

of housing supply.

The model in this section gives a simple relation between house prices and economic fun-

damentals, including mortgage interest rates, borrowing constraints, and incomes. This is

termed the fundamental or long-run price of housing for the remainder of the paper. This

long-run price varies by time and location as fundamentals change. There is no guaran-

tee an area will ever converge to this long-run price, as fundamentals may change faster

than observed prices. In this sense, the effects of mortgage rates on house prices require

modeling both the continuously changing latent long-run relation between house prices and

fundamentals, and the determinants of short-run fluctuations of the price of housing.

6The equation is: lnP = (β lnY −α ln(R+ δ+ τ −E[Ṗ ]+ θz− lnS)/α. They key difference is equation 3
omits the term δ+ τ −E[Ṗ ] and z, which include depreciation (δ), taxes (τ), expected appreciation (E[Ṗ ]),
and other factors (z).
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3 Cointegration and House Prices
House prices exhibit a high degree of momentum (Case and Shiller, 1989), while at the

same time, being driven by fundamental microeconomic principles of producer and consumer

theory (Muellbauer and Murphy, 1997). Accordingly, the cointegration and equilibrium

correction framework of Engle and Granger (1987) is a natural fit for those seeking to model

house price time series. In the cointegration literature, short-run dynamics are driven both

by recent fluctuations in determinants and the level of deviation in the level of the series

from its long-run equilibrium value.

Cointegration analysis proceeds in two steps following Engle and Granger (1987). To sum-

marize briefly, the first step involves specifying a long-run equlibrium model of nonstationary

I(1) variables in levels which share common stochastic trends. The operating hypothesis is

that a linear combination of these I(1) variables is I(0) and stationary, also called “coin-

tegrated”. The second step takes a short-run dynamic model of the same variables from

the first stage, first-differenced in order to make them I(0), and includes the residuals from

this first-stage model as an additional term representing a measure of disequilibrium from

a fundamental valuation. The parameter on the disequilibrium measure, α, gives the speed

of adjustment towards this equilibrium (were it to exist). Hypothesis tests can then be

conducted to determine whether the variables in the first stage are cointegrated.

There is no shortage of cointegration analysis involving house prices in the literature.7 The

major empirical challenge lies in the length of housing cycles, which can last over 15 years

(peak to peak), and the paucity of long time series available, most of which start in 1990

or later, though there are some exceptions. While some have found house prices to be

cointegrated with economic fundamentals such as rents (e.g Gallin, 2008), others have had

mixed success establishing the existence of a long-run equilibrium involving incomes (e.g.

Malpezzi, 1999; Gallin, 2006). Some researchers have sought to exploit the panel dimension

to overcome the small number of cycles observed in individual locations (e.g. Holly et al.,

2010; Oikarinen et al., 2018). Panel test statistics typically require accounting for cross-

sectional dependence, as many locations are correlated with others within the panel.

7A Google Scholar search of {“cointegration” and “house prices”} returns 7,660 results. In fact, one of
the seminal papers on cross-sectional dependence in panel models, written by Holly et al. (2010), uses U.S.
regional house prices as its application.
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It is, however, challenging to model interest rates in cointegrating (i.e. long-run) regressions.

Because house prices tend to move in long, broad cycles, and interest rates are substantially

more volatile, it has been necessary to use theoretically valid restrictions to identify an

effect. For instance, Oikarinen et al. (2018) model interest rates along with incomes in a

cointegration framework using data on U.S. cities, but find no effect of interest rates on

house prices, neither in the short-run nor long-run portions of the model. The solution of

McQuinn and O’Reilly (2008) is to augment incomes with interest rates in an “ability to

pay” framework, which was the basis for the model in Section 2. From this launch point, I

begin my cointegration analysis of house prices.

The simple model in Section 2 suggests the presence of a common trend between p and b

and thus that these two series are cointegrated. Accordingly, I hypothesize and specify a

cointegrating regression between house prices, incomes, borrowing constraints, and interest

rates following equation 5 which reflects a period and location-specific fundamental value of

housing. I assume the elasticity of supply is location-specific but time-invariant, suggesting

different β1s across locations. Borrowing constraints and interest rates are set at the national

level and are invariant with respect to location, giving bit = kt + yit − rt, and

pit = βi0 + βi1bt + uit (6)

with the long-run elasticity with respect to income and borrowing constraints given by βi1,

with respect to interest rates of −βi1, and the elasticity of housing supply given by σi =
1
ϕi

= 1−βi1

µβi1
, assuming a known elasticity of demand (Harter-Dreiman, 2004). Note that this

parameterization implicitly assumes incomes, interest rates, and borrowing constraints all

load the same onto the fundamental price of housing. The measure of disequilibrium is then

ûit = pit − β̂i0 − β̂i1bt.

Estimation of equation 6 can be performed using equation-by-equation OLS without aug-

mentation (e.g. Pesaran and Smith, 1995). It is common to model u using a factor structure

to account for cross-sectional dependence, uit = λ′
iF t + vit. However, Engle and Granger

(1987) note that in cointegrating regressions, because both p and b are I(1) and cointegrated

and u is I(0), endogeneity bias due to correlation between b and u is dwarfed by the variance
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of b.8 Despite this result, researchers often attempt to control for F on the right-hand side

of the regression, with two of the most common being the inclusion of the mean of p and b,

(Holly et al., 2010) or augmentation with a term representing a common dynamic process

(Teal and Eberhardt, 2010).

The equilibrium house price represented by the economic fundamentals in equation 6 is

just one possible formulation. Alternative specifications with other variables or parameter

restrictions are also considered, including different interest rates and a 30-year amortization

term. After performing some basic time series tests of the component series, there are two

key questions which are answered in turn. First, does the cointegrating relation in equation

6 exist, and second, does this equation adequately specify the long-run relation compared to

alternatives?

3.1 Time series tests

Having estimated the long-run fundamental house price, it is necessary to determine whether

house prices do, in fact, tend toward it. Standard tests involve specifying a short-run dynamic

model of house prices, including the disequilibrium term from equation 6. Assume house

prices follow a bivariate vector equilibrium correction model, estimated city-by-city. In this

model, x = [p b]′ is modeled as a function of lagged changes in house prices, lagged changes

in the maximum loan amount, and the state of disequilibrium between the house price level

and its fundamental value. With vectors in bold and omitting city subscripts,

∆xt = a+αût +
J∑

j=1

dj∆x′
t−j + et (7)

Tests for cointegration can be residual-based or parameter-based. The standard Engle-

Granger approach is to test for stationarity of û, that is, the measure of disequilibrium.

Were disequilibrium to persist forever, it would suggest that the variables in the cointegrating

regression do not share a common stochastic trend and there is no linear combination that is

8Such endogeneity could arise if house prices and wages are simultaneously determined, e.g. through a
high fraction of workers in homebuilding industries, and if house prices influence payment constraints such as
the case in the early Great Recession period when underwriting noticeably tightened in response to declining
house prices.
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I(0).9 This approach has received some criticism from Kremers et al. (1992) and others, who

argue that this residual-based test implicitly restricts short-run dynamic relations between

elements of x and the long-run cointegrating relation. Instead, a test with higher power

is the null hypothesis that α = 0. This family of tests assesses whether the system x is

tends towards equilibrium based on û. This occurs only if some α < 0. Banerjee et al.

(1998) breaks apart the equilibrium correction term from equation 7 and tests directly the

parameters on pt−1, which are the same αs as equation 7 and includes α in the house price

equation. Similarly, the test of Johansen (1995) does not impose a common factor restriction

(see Lütkepohl et al., 1999). Accordingly, the cointegration tests of Johansen (1995) and

Banerjee et al. (1998) are preferred.

3.2 Panel tests

There are also panel cointegration tests. Rather than estimate equation 7 city-by-city, it is

possible to estimate a similar model of short-run house price dynamics in a panel regression

in order to gain power. When T is large, Nickell (1981) bias is assumed to be small and

ignored; estimators are more complex when T is small. As was the case with the coin-

tegrating regression, the error structure has been the focus of much recent research, with

factor-augmented specifications now common. Below is the standard dynamic model used

to perform panel cointegration tests,

∆xit = ai +αûit +
J∑

j=1

dj∆x′
it−j + eit (8)

where eit = λ′
iF t + ϵit. Typically, house price changes exhibit cross-sectional dependence.

Westerlund (2007) derives four tests based on the Banerjee et al. (1998) method of testing

for cointegration, that is, direct tests of α = 0. Rather than controlling for λ′
iF t, critical

values are based on bootstrapped distributions that preserve the correlated structure of the

data. The first two test the null hypothesis of no cointegration for the panel as a whole,

while the other test the null that at least one cross-sectional unit is cointegrated.

9This flavor of test is employed by Gallin (2006) who shows a failure to reject the null hypothesis of no
cointegration between house prices and incomes.
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4 Data Overview
The base dataset consists of publicly-available house price indices produced by the Federal

Housing Finance Agency (FHFA) for the largest 100 cities at a quarterly frequency. This

is merged with proprietary data on borrower and loan characteristics for Enterprise (Fannie

Mae and Freddie Mac) loans aggregated to the same geographies and time periods. Finally,

these series are supplemented with publicly available measures of interest rates and other

macroeconomic indicators.10 The sample used in analysis is a balanced panel of these 100

cities at a quarterly frequency between 1996Q1 and 2021Q4.

4.1 House prices

The source of house prices, P , is the “expanded-data” repeat-sales house price indices pro-

duced by the FHFA.11 This index takes purchase transactions from the Enterprises, the Fed-

eral Housing Administration (FHA), and county recorder files (from CoreLogic) to construct

quarterly house price indices from 1990Q1 through 2022Q2. To ensure sufficient transactions

counts, this index database is limited to the largest 100 cities. The definition of a “city” is

based on Core-Based Statistical Areas (CBSA, 2020 definitions), and Metropolitan Divisions

(CBSADs) where available.

4.2 Borrower and loan characteristics

Borrower and loan aggregates are calculated using proprietary Enterprise data on first-lien

home purchase loans originated between 1996Q1 and 2021Q4. Loans across both Enterprises

are pooled within each city-quarter cell to calculate aggregates. The back-end DTI (the sum

of all debt servicing costs divided by income) is used as the debt service payment constraint

measure. In years prior to 2009, an increasing fraction of DTIs are missing in the database

and are imputed based on the procedure found in Davis et al. (2022).

The maximum loan amount measure, Bit, requires a value of credit standards for a particular

10All variables are nominal, though economists are divided on the use of real versus nominal house prices in
time series contexts. For instance, while McQuinn and O’Reilly (2008); Saiz (2010), and others use nominal
prices, Gallin (2006); Holly et al. (2010), and others use real. In the present research, price levels either
appear on both sides of equations (thus cancelling) or are absorbed within fixed effects. There is a preference
for modeling nominal variables, however. For mortgage borrowers, mortgage-backed security investors, and
financial regulators, the nominal house price determines the equity of a home and collateral for a mortgage.
Additionally, inflation dynamics with house prices may also be different than inflation dynamics with wages
and other house price determinants. Accordingly, all variables are modeled as nominal.

11This database can be found at the following static URL: https://www.fhfa.gov/DataTools/

Downloads/Documents/HPI/HPI_PO_metro.txt. The index used is the seasonally-adjusted series, index sa.
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time period, K̄t. The primary issue is that credit demand is non-constant across locations,

so an average or threshold measure for a particular location is insufficient. I take the average

DTI in the 95% percentile city as a measure of the frontier DTI to be used in the maximum

loan amount calculation. Of course there is no true “maximum” DTI, as DTIs can rise

if compensated with higher interest rates or months of reserves. The credit availability

frontier (Anenberg et al., 2019) is also determined by credit scores and other characteristics.

However, this measure should suffice as an index to track general trends in debt service

payment constraints in the U.S. over time.

In addition to this national measure of maximum DTI, I also calculate DTI metrics for each

city-quarter cell, including the average DTI and the fraction of all borrowers with DTIs

greater than 36% or 43%, respectively. These fraction variables are proxies for Kit, which is

the fraction of borrowers near payment constraints.

4.3 Mortgage interest rates

The mortgage interest rate, R, is the Freddie Mac 30-year fixed rate average for the United

States, accessed via the Federal Reserve Bank of St. Louis’ FRED dataset API using STATA.

This series is weekly in its raw state, and is aggregated to quarterly based on the within-

period average. Other interest rates are also considered, including the Federal Funds Rate

and the 10-year Treasury rate.

4.4 Wage income

To capture a reliable, granular, high-frequency measure of income, Y , I use the Bureau of La-

bor Statistic’s Quarterly Census of Employment and Wages (QCEW). This dataset includes

a county-level census of average weekly earnings, which is aggregated to CBSA/CBSADs

using employment shares from the same dataset. This particular income measure has the

added benefit that it likely represents the marginal borrower, which has income primarily

through wage earnings as opposed to capital or financial instruments.

4.5 Maximum loan amount

The maximum loan amount measure is calculated as Bit = K̄tYit/Rt. It is important to be

clear from the outset that this measure is not to be taken literally: while average incomes and

interest rates are averages and thus have clear interpretations for infinitely-lived interest-only

loans, leverage, amortization, and other loan and borrower characteristics vary. Additionally,

the credit standards measure is imperfect, as it reflects Enterprise loans, borrowers can affect

their own DTIs by reporting more income, and DTIs can rise above strict Enterprise or FHA
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limits on the private market by paying higher interest rates. Accordingly, the measure of B

is best interpreted as a maximum loan amount index, scaled to give plausible loan amounts

that are easily interpretable.

4.6 Summary statistics and time series properties

The five main variables whose properties are considered include house prices, the maximum

loan amount, and the three components of the maximum loan amount which include the

national mortgage interest rate, the national credit standards measure, and the local average

wage income. In addition, the three debt service-to-income (DTI) measures are summarized.

Summary statistics for these variables are presented in Table 1. The mean quarterly growth

rate for house prices is 1.2%, with wages increasing by 0.8%. The average mortgage interest

rate over the sample was 5.3%. Importantly, over the sample, the maximum loan amount

rose by 1.9% per quarter, largely due to increases in wages and the decline in interest rates.

The disequilibrium measures, which give the percentage house price levels are overvalued

relative to economic fundamentals, and calculations of which are to follow, show an average

disequilibrium level of 0.2%, with a 90% interval of -22% to 28%. This suggests that at

times, house prices departed substantially from economic fundamentals.

Correlations are calculated across variables within city-periods over cities and time. House

prices have a small positive quarterly correlation with wages and a negative correlation with

the mortgage rate. Each of the DTI measures is highly correlated within cities. Payment

constraints are negatively correlated with house prices.

Across the 100 city sample, the median optimal lag length of the bivariate system x = [y b]′

is 4 with some cities necessitating 2 or as many as 7, according to AIC values. Based on

Dickey and Fuller (1979) regressions with a constant term but no trend using MacKinnon

(1994) 10% critical values, house prices are I(1) in 98 of 100 cities, with two estimated to be

I(2) (Los Angeles and Sacramento, CA).12 Income and the maximum loan amount is I(1) in

all 100 cities, and the two national measures are both I(1).

12As defined by Engle and Granger (1987), a series with no deterministic components which has a station-
ary, invertible, ARMA representation after differencing d times is said to be integrated of order d, denoted
I(d).
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5 Cointegration Results

5.1 Long-run model

Estimates from the first-stage cointegrating regression models in equation 6 show substantial

variation in parameters across cities. When the baseline model (BASE) is estimated without

factor-augmented residuals, the smallest β̂i1 is 0.14 for Detriot, MI, and the largest is 0.78

for Los Angeles, CA. The mean group estimate (Pesaran and Smith, 1995) is 0.48 and the

median estimate is 0.50. These estimates are interpreted as three house price elasticities,

with respect to: incomes (β̂i1), loan payment constraints (β̂i1), and mortgage interest rates

(-β̂i1).

As predicted in equation 5, the elasticity of housing supply is negatively related to the

strength of the relation between maximum loan amounts and house prices. In cities with

low supply elasticities, demand increases are capitalized into prices at high rates, implying

little supply response. However, in cities with high supply elasticities, demand increases do

not affect prices very much, implying substantial construction responses.

The β̂i parameters are shown in Figure 4 panel (a) versus the 2018 Wharton Land Use

Regulatory Index (Gyourko et al., 2021), a variable in the housing literature that commonly

is used as a determinant of or proxy for the elasticity of housing supply. After transforming

β̂i1 into an estimate of the long-run elasticity of housing supply σ using the formula σ̂i =
1

ϕ̂i
= 1−β̂i1

µβ̂i1
and assuming µ = 0.75 (Albouy et al., 2016), this series is plotted in panel (b).

The range of the elasticity is approximately 8 in the most supply elastic cities, to around 1

in the most supply inelastic cities. These estimates are within the range of Harter-Dreiman

(2004), Green et al. (2005), and Baum-Snow and Han (2019), but somewhat higher on

average than Saiz (2010). It is remarkable that the estimate of the elasticity of housing

supply produced here includes no quantity information, instead inferring the elasticity only

based on the strength of the relation between borrowing power and house prices, following

Harter-Dreiman (2004).

When estimated using models accounting for cross-sectional dependence, parameter esti-

mates differ wildly. The CCE estimator of Holly et al. (2010) gives estimates that do not

make sense given our knowledge of the house price elasticity with respect to incomes, with
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many estimates below zero and above one, and an average estimate of 1.15.13 Additionally,

the CCE estimate of βi1 has a 0.01 correlation with the BASE estimates across the 100

cities.14 The CDP estimator of Teal and Eberhardt (2010) gives βi1 estimates that are much

smaller, but fairly correlated with the BASE specification, with a correlation of 0.34 (and a

correlation of 0.05 with the CCE estimator).15 The mean group effect, however, is only 0.08.

For full estimates see appendix table A.1. Most problematic is the CCE estimator, whose

issues have been noted by Pedroni (2007). In this model, the estimated cointegration param-

eters are no longer super-consistent because the common trends are removed by including

the period means, thus re-introducing problems caused by simultaneity and omitted vari-

ables. Accordingly, the BASE and CDP disequilibrium measures are preferred, with BASE

measures put head-to-head in encompassing tests conducted on estimates from short-run

dynamic models.

5.2 Short-run models

Next, cointegration tests are conducted over each of the individual cities using measures of

disequilibrium from the OLS regressions. Johansen (1995) tests reject the null of one or

more cointegrating vectors in 98 out of 100 cities, leaving two with evidence of cointegra-

tion (Providence, RI, and Tacoma, WA). Banerjee et al. (1998) tests reject the null of no

cointegration in 15 cities. In sum, estimated independently, there is weak evidence for a

cointegrating relation between house prices and maximum loan amounts.

Cointegration tests that are estimated across the panel reveal a different story. Westerlund

(2007) tests, after accounting for cross-sectional dependence, reject the null of no cointegra-

tion for all units in the panel at the 10% level using two distinct group means tests, and for

any units in the panel at a 0.1% level using two distinct panel tests. Based on these panel

cointegration tests, cointegration seems likely in most cities.

Finally, I turn to falsification tests of the restriction that the parameters on kt, yit, and rt

are each equal to βi1. This is a key prediction of the theory in Section 2, and fundamental

to the empirical strategy of anchoring mortgage interest rates to incomes and borrowing

13The CCE controls that define F are the means across cities within time periods, or p̄t and b̄t.
14The problematic nature of the estimates produced by the CCE estimator is also noted by Oikarinen

et al. (2018).
15The CDP controls that define F are calculated using an auxiliary regression of first-differences of p and

b on differenced time dummies. The estimated time dummy parameters are then used as controls in the
cointegrating regression.
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constraints in the cointegration analysis. My approach involves a series of encompassing

tests of alternative cointegrating regressions, inserted separately and then together, into

equation 8. Eight alternative right-hand-sides of the cointegrating equation are considered

in addition to the primary one specified in equation 6. These are used to calculate alternative

disequilibrium measures for use in second-stage dynamic models. The first six are estimated

using OLS: income alone; incomes and interest rates (unrestricted); incomes, interest rates,

and borrowing constraints (unrestricted); incomes and interest rates (restricted equal and

opposite signs); b, but using a 30 year amortization period for discounting; and b, but using

the 10-year Treasury rate. The final two consider b, but with CCE and CDP controls.

The results of dynamic models with these alternative measures are summarized in Table 2,

offering several findings. First, as the first nine models show, each disequilibrium measure

has similar estimates of mean reversion, at 3-4% per quarter, with the exception of the CCE

model which has no mean reversion. After the CCE model, models with interest rates enter-

ing unrestricted have the highest in-sample root mean-squared errors (RMSE), suggesting

inclusion along with income harms predictive power. Models with a single term, be it income,

income and interest rates (restricted) or income, interest rates, and borrowing constraints

(restricted), each are tied for the lowest RMSE, along with the alternative amortization term

(30 year) and interest rate (10-year Treasury).

When each disequilibrium measure is put head-to-head with the BASE model, the baseline

maximum loan amount equilibrium correction term is the only one that is both negative and

significant, with all other measures either turning insignificant or positive. Together, this

suggests that the maximum loan amount measure outperforms alternatives where it matters

most: in explaining appreciation rates of housing and providing the most unique and relevant

information.

5.3 Summary

This section establishes a cointegrating relation exists between house prices, interest rates,

incomes, and borrowing constraints. These variables enter with restrictions placed on the

cointegrating parameters, with incomes and borrowing constraints having equal signs, and

interest rates having an equal but opposite sign. The economic interpretation of these re-

strictions is as a maximum loan amount measure. Estimators that augment residuals with

factors, such Holly et al. (2010) and Teal and Eberhardt (2010), perform worse than those

estimated using OLS in second-stage dynamic models. Accordingly, the preferred disequi-
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librium measure uses the cointegration equation with restricted incomes, interest rates, and

borrowing constraints, estimated without residual augmentation (the BASE model). The

sections that follow use this particular disequilibrium measure to examine the channels by

which mortgage rates affect house prices.

6 Effects of Interest Rates and Payment Constraints
This section estimates the effect of a single, permanent change in mortgage interest rates

on house prices. The operating hypothesis in this section is that there are differences in αi

across cities, that is, the parameters that determine a city’s speed of adjustment to its long-

run equilibrium. The interest rate has a mechanical relation to debt service payments for

new borrowers, holding loan amounts and all other variables constant. Accordingly, interest

rate changes affect the fraction of payment-constrained borrowers in a city Kit, potentially

making such cities more responsive to interest rate changes with faster rates of adjustment

(Greenwald, 2018).

Building on equation 8 and focusing on the house price equation, a dynamic model of house

prices with factor-augmented errors is

∆pit = ai + α0ûit−1 + α1ûit−1 ×Kit−1 +
J∑

j=1

d1j∆pit−j +
J∑

j=1

d2j∆bit−j + eit (9)

where eit = λ′
iF t + ϵit. From this base equation, specifications diverge concerning λ′

iF t,

as was the case of the long-run model. This general representation of a factor structure

encompasses time period fixed effects, common correlated effects (CCE) estimators in the

vein of Holly et al. (2010), or factors estimated using principal components analysis as

do Greenaway-McGrevy et al. (2012). One empirical challenge is choosing the structure

of λ′
iF t so that cross-sectional dependencies are absent from eit. Saturation of this term

with a multitude of variables or factors is sure to achieve this goal, but at the cost of

absorbing potentially useful explanatory power with no available interpretation. It is thus

best to be parsimonious as possible, both to achieve an efficient estimator and to achieve

useful identification of the desired effect, in this case, interest rates. Two augmentations are

considered, time period fixed effects and CCE terms, the latter of which enters as means of

both right-hand side and left-hand side variables (∆p̄t, ∆p̄t−1, ∆p̄t−2, ∆p̄t−3, ūt−1, ¯ut−1Kt,
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∆b̄t−1, and ∆b̄t−2) with loadings that are city-specific following Holly et al. (2010). The time

period fixed effects use 102 degrees of freedom whereas the CCE controls use 800 (100 cities

× 8 variables), not counting those with multicollinearity with respect to other variables or

sets of variables. This is 1% and 8% of the sample, respectively.

There are three possible channels that are considered. The first channel is the change in the

long-run fundamental value of housing. The second is the speed of adjustment of house prices

to its long-run fundamental value. The final channel is the short-run effect of fluctuations in

the maximum loan amount, which is mechanically related to the prevailing mortgage interest

rate.

The partial derivative of equation 9 with respect to rt−1 (ignoring the factor-augmented

residuals) is

E

[
∂∆pit
∂rt−1

]
=

∂∆pit
∂ût−1

∂ûit

∂rt−1︸ ︷︷ ︸
fundamentals effect

+
∂∆pit
∂Kt−1

∂Kit−1

∂rt−1︸ ︷︷ ︸
adjustment speed effect

+
∂∆pit
∂∆bt−1

∂∆bit−1

∂rt−1︸ ︷︷ ︸
short−run effect

(10)

In this expression, the interest rate can have three effects, with operational hypotheses to

follow. The first is through deviations from the long-run fundamental value, uit. An interest

rate change, all else equal, causes the disequilibrium term to fall, i.e. if interest rates rise, the

fundamental house price falls, creating a positive disequilibrium or ∂ûit/∂rt−1 > 0. Then, as

is standard in an equilibrium correction model, ∂∆pit/∂ût−1 < 0. Multiplied,

∂∆pit
∂ût−1

∂ûit

∂rt−1

< 0

In models with time period fixed effects, this equation is identified by variation in βi1 inter-

acted with changes in rit−1, that is, the long run elasticity of house prices with respect to

maximum loan amounts. Level effects are not identified in models with time period fixed

effects.

The second effect is through the speed of adjustment to equilibrium. The fraction of bor-

rowers near payment constraints Kit is positively related to the interest rate, so interest rate
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is positively related to this share such that ∂Kit/∂rit > 0. Then, the effect of borrowing

constraints on house prices is through the disequilibrium term. However, a high fraction of

borrowers near payment constraints may only increase the speed of adjustment when the

disequilibrium is positive, that is, when house prices are overvalued based on fundamentals.

There is no reason to believe that an already-high fraction of constrained borrowers will help

to increase house prices in periods of negative disequilibrium. Therefore, an asymmetric

effect is hypothesized, and ∂∆pit/∂Kit < 0 only if û > 0.

∂∆pit
∂Kt−1

∂Kit−1

∂rt−1

{
= 0, if ûit−1 ≤ 0

< 0, if ûit−1 > 0

The final is the short-run dynamic response through ∆b. This effect is hypothesized to be

negative by first-differencing the long-run equation 6 and noting that rt−2 is fixed.

∂∆pit
∂∆bt−1

∂∆bit
∂rt−1

< 0

This effect is not identified in any model with time period fixed effects or CCE controls

because variation in r is constant across locations within periods, and thus absorbed by

other covariates.

6.1 Results

Table 3 presents estimates of variations of the model represented by equation 9. The preferred

DTI variable is DTI43, which is the share of borrowers in a city with a back-end DTI greater

than or equal to 43% of monthly income, and the preferred augmentation to residuals is

time-period fixed effects. Following these choices gives estimates of the best fit while giving

cross-sectional correlations of residuals that approach zero.

The first column presents a model with no time-period fixed effects. The next three columns

consider alternative measures of payment constraints while including time-period fixed ef-

fects. The next controls for cross-sectional dependence with a set of mean group effects

following Holly et al. (2010). The final two columns model the hypothesized asymmetric re-

sponse to positive versus negative disequilibrium states using both time-period fixed effects

and CCE controls.
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6.1.1 Long-run fundamentals effect

By altering the long-run fundamental value of housing, interest rates put house price changes

on a path to that equilibrium. The change to that equilibrium need not to occur all at once

or even quickly. Instead, evidence suggests effects are small on a per-period basis, but

accumulate at longer time horizons.

The parameters on û and û ×Kit, using various measure of DTI as proxies for K, indicate

reversion of house prices to the estimated long-run fundamental value. When û enters alone,

its parameter is not statistically significant from zero. However, when û is interacted with

various DTI measures, this parameter is significant and negative across all specifications.

While each measure of DTI gives similar in-sample RMSEs, but the share of borrowers

within a city with DTI ≥ 43, is the preferred expression because this most closely resembles

a value representing a borrowing constraint, especially in recent periods where Dodd-Frank

qualifying mortgage (QM) rules are in effect. This estimated model is shown in column 4

of table 3. Using this model’s estimates the effect of interest rates on house prices via the

change to long-run fundamental values, evaluated at the mean β̂i1 of 0.48, and using α0=0

and α̂1 = −0.12 in model 4,

E[
∂∆pit
∂ût−1

∂ûit

∂rt−1

] = −β̂i1(α̂0 + α̂1DTI43it) = −0.057DTI43it

Evaluated the mean DTI43 of 0.23, this partial effect suggests that a 0.1 log-change in the

mortgage interest rate gives a -0.12% change to house prices in the first period following

the change (for context, going from 4% to 5% mortgage rates is a 0.22 log-change). This

effect will accumulate in a dynamic context as disequilibrium diminishes over time and lags

of price changes influence future appreciation rates.

6.1.2 Adjustment speed effect

Interest rates mechanically affect the maximum loan amount a borrower can afford. As

demonstrated in Section 2, the higher the interest rate, the lower the maximum loan amount.

A corollary to this concept is that for the same loan amount, an interest rate increase will

increase the monthly payment. We would therefore expect interest rates and the share of

debt service-constrained borrowers to be positively linked. This point is made thoroughly

by Greenwald (2018), who shows in a DSGE model of the U.S. economy how interest rate

20 Larson — House Prices, Mortgage Interest Rates, and Payment Constraints



increases serve to make payment constraints binding for a larger fraction of borrowers, and

how this can affect propagation of interest rate shocks.

Figure 1 shows the median share of borrowers across cities with DTIs greater than 43,

plotted alongside the 30 year fixed-rate mortgage series. Visual inspection strongly suggests

a positive relation between interest rates and high DTIs. Modeling the log difference of

DTI43 (lowercase) as a function of a constant term and the lagged log of the interest rate

gives the effect of the mortgage interest rate on the share of borrowers in a city facing

payment constraints.

∆dti43it = a+ ζ∆rt−1 + wit (11)

This extremely parsimonious model projects DTI43 onto mortgage rates quite well relative

to other models.16 The estimate of ζ is 0.29 with a standard error of 0.12, suggesting a

0.1 log-change in the mortgage interest rate gives a 0.03% change in the share of Enterprise

borrowers with a DTI greater than or equal to 43. In levels, a change in mortgage interest

rates from 4% to 5% gives a 6% increase in DTI43; at the mean DTI43 of 23%, this would

be an 1.4 percentage point increase to 23.4%. In terms of partial derivatives with respect to

prices, using ζ̂ = 0.29 and α̂1 = −0.12,

E[
∂∆pit
∂Kt−1

∂Kit

∂rt−1

] = α̂1ζ̂ ûit−1 = −0.03ûit−1

Evaluated at a 1 standard deviation disequilibrium measure of 0.15, this suggests a 0.1 log-

change in mortgage interest rates gives a -0.05% change to house prices in the first period

following the change in interest rates by quickening the speed of adjustment to the long-run

equilibrium. Note that this is about 40% of the estimated 1-period effect due to altering the

long fundamental house price.

When using model 6, which takes into account asymmetric effects, greater richness emerges.

16City fixed effects do not reject the null hypothesis that each is equal to 0; additional lags of ∆dti43 and
∆r cannot reject the null hypothesis that each is 0 at the 5% level.
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If û ≤ 0, the parameters on û×DTI43 and û− ×DTI43 sum to zero, giving an adjustment

speed effect of interest rates equal to zero as predicted. When taking into account the

non-interaction terms by summing both non-interacted α parameters, the total per-period

equilibrium correction is about -0.05 of the disequilibrium per quarter. When û > 0, the

α1 parameter is -0.36 vs -0.12 in model 3. Accordingly, the partial effect is substantially

higher, at -0.10 vs -0.034. However, when the total equilibrium correction effect for model

6 is evaluated, because α0 = 0.10, equilibrium correction is nearly zero at the mean DTI43.

Only when the share of DTI43 moves beyond 27% does equilibrium correction occur. Model 6

thus provides some evidence of important threshold effects: when at negative disequilibrium,

equilibrium correction is slow, steady, and unrelated to payment constraints; when at positive

disequilibrium, adjustment is nonexistent unless payment constraints are binding for a large

fraction of borrowers, after which adjustment accelerates.

6.1.3 Short-run effect

Short-run effects are potentially large but uncertain, with quarterly fluctuations in inter-

est rates serving as noisy predictors of future house price appreciation. The first thing to

note is that this effect is only identified in model 1, because the partial effect is subsumed

within controls in the other models. Model one has a large residual correlation across cities,

however, so this model may suffer from omitted variable bias. Nontheless, lacking a better

identification strategy, these effects are used. The expected partial effect is as follows, where

d̂1 = 0.03 and the mean β̂i1 = 0.48,

E[
∂∆pit
∂∆bt−1

∂∆bit−1

∂rt−1

] = −β̂i1(d̂1) = −0.015

This equation suggests a 0.1 log-change in mortgage interest rates gives a -0.15% change to

house prices in the first period following the change in interest rates.

6.1.4 Combined effects

Together, these estimates suggest that a 0.1 log-change in mortgage interest rates results in

the following changes to house prices in the following quarter: a long-run effect of -0.12%,

an adjustment speed effect that depends on the initial state of disequilibrium, and a short-

run effect of -0.15%. Combined, this gives a 1-quarter interest rate-house price appreciation

elasticity of between -0.01 and -0.05 depending on the initial disequilibrium state. This is an

order of magnitude smaller than the long-run elasticities from the cointegrating regressions
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which ranged from -0.2 to -0.8. Evaluated at a 1-quarter elasticity of -0.03 and a long-run

elasticity of -0.5, a permanent change in mortgage interest rates from 4% to 5% gives a

partial house price change of -0.7% after one quarter and -10.7% in the long-run, relative to

baseline rates.

How do these estimates compare to the existing literature? McQuinn and O’Reilly (2008)

estimate a quarterly equilibrium correction effect of about -0.05 with no other interest rate

dynamics, suggesting a quarterly elasticity of -0.05 given their version of β̂1 = 1.0, estimated

over the country of Ireland. The results in this paper are thus similar, though the channels by

which interest rates affect dynamics are somewhat different. Oikarinen et al. (2018) estimates

panel equilibrium correction models across U.S. cities finding a mortgage interest rate effect

of 0, though with an equilibrium correction term of -0.05, nearly identical to McQuinn and

O’Reilly (2008). Gorea et al. (2022) estimates shocks to Federal Funds rates making their

results difficult to compare to the estimates in this paper, though hopefully their work will

allow direct comparisons in the future.

6.2 Horizon Effects

The models in this paper suggest interest rates enter into models of house prices largely

by altering the long-run fundamental price and the speed of adjustment to that price. The

question in this section turns to the effects of interest rate changes on house prices at various

time horizons.

Define an h-step ahead change in price from a base period as ∆pi,t+h,t = pit+h − pit. This is

modeled conditional on information known at time t, with h-specific parameters.

∆pi,t+h,t = ahi + aht + αh0ûit + αh1ûit ×DTI43it +
J∑

j=1

dh1j∆pit−j+1 +
J∑

j=1

dh2j∆bit−j + ei,t+h,t

(12)

This equation is estimated using separate regressions for each time horizon. Figure 5 traces

out α̂h0 + α̂h1 × DTI43it along with 90% confidence intervals for ût−1 = 0, the mean

DTI43t−1 = 0.23, and the mean β̂i1 from the long-run regression of 0.48. The flat dotted

line is the long-run effect, which when multiplying the mean of β̂i1 by ln 3.25 − ln 3 = 0.08

gives about -4% versus baseline appreciation after four years. We can see that the h-step
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models approach the long-run estimate around this time.17

The estimated change in house prices due to a level shift in interest rates is different for

different base levels due to the natural log functional form, which is motivated by the presence

of the interest rate in the denominator of the infinite sum of payments from equation 2.

Accordingly, a rate change from 3% to 3.25% has about twice of the effect of a change in

rates from 6% to 6.25%, as shown in figure 6 to be about -4% vs -2% after four years.

Effects of the share of payment constrained borrowers on interest rates are considered along-

side house price elasticity differences because the two are so highly correlated and they both

have important effects that interact. Regressing the cross-sectional means of DTI43 on the

Wharton Residential Land Use Regulatory Index (WRLURI) gives the estimated equation,

D̂TI43i = 22.1(0.33) + 3.98(0.56)×WRLURIi, with an R2 of 0.36 (scatterplot with linear

fit in the Appendix). Accordingly, to estimate the effect of a change in interest rates on

house prices for areas with high and low elasticities of housing supply, an auxiliary equation

is estimated to choose the evaluated interest rate elasticity. This auxiliary equation maps

long-run elasticities to WRLURI values, with standard errors in parentheses. The equation

estimated is β̂i1 = 0.455(0.013) + 0.124(0.022)WRLURIi, giving βlowreg
i1 = 0.37 at the 5th

percentile value of the WRLURI of -0.7 and βhighreg
i1 = 0.62 at the 95th percentile value of the

WRLURI of 1.3. Long-run elasticities are also highly associated with payment-constrained

borrowers, so the scenario considered here is to compare a hypothetical area at the 5th per-

centile of DTI43 and the WRLURI with the 95th percentiles in each. After four years, the

effect of a change in interest rates from 3% to 3.25% on house prices is -2.3% in the 5th

percentile city and -5.3% in the 95th percentile city. These results imply that supply-elastic

areas may be more insulated from interest rate changes than supply-inelastic areas in the

long-run.

Finally, asymmetric effects are considered. Figure 8 shows three sets of estimated partial

effects of a change in rates from 3% to 3.25%: with an initial negative disequilibrium of 15%

evaluated at the medianDTI43, and with an initial positive disequilibrium of 15%, evaluated

at the median and 95th percentile DTI43. Recall the model in Table 3 suggests threshold

17Note that these are partial estimates, not impulse-response functions. While the h-step ahead models
provide direct estimates of interest rate changes, these are not interest rate shocks nor are usable to measure
feedback between house prices and maximum loan amounts. Successive interest rate changes are additive
such that offsetting interest rate movements in a short amount of time will have little partial effect on prices.
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effects; in areas with positive disequilibrium, convergence occurs only when DTIs are high.

Using h-step models, we see that this threshold effect is weaker than in the 1-step case from

Table 3. Indeed, positive convergence status gives steady house price changes, reducing house

prices by about -3.8% vs baseline after four years. However, threshold effects in the case of

positive disequilibrium is no longer apparent. While house prices converge much faster at

first with higher DTI43, they both reach the same -6% partial effect vs baseline after four

years. This exercise suggests areas with initially high DTIs will face greater responsiveness

to interest rate changes, but by year 3, areas with low DTIs catch up.

7 Conclusion
This research extends the long tradition of estimating house price dynamics in panel regres-

sion frameworks in two main ways. First, building on the seminal papers of Malpezzi (1999),

McQuinn and O’Reilly (2008), Holly et al. (2010), Gallin (2006, 2008), and Oikarinen et al.

(2018), house prices are modeled in an equilibrium correction framework where dynamics

are based on both short-run determinants and long-run economic fundamentals. Previously,

it has been difficult to link interest rates to house prices due to the rapid fluctuations in the

mortgage interest rate combined with the long cycles that define house price dynamics. The

solution to this problem is to restrict interest rates to enter into the long-run fundamental

house price along with borrowing constraints in a manner consistent with the ability-to-pay

framework of McQuinn and O’Reilly (2008). This hypothesized long-run fundamental value

is shown to dominate alternative (unrestricted) models in subsequent dynamic model per-

formance in terms of predictive ability, thus lending credence to the notion that borrowing

constraints and interest rates fundamentally drive house prices.

The second contribution is to link mortgage interest rates to the speed of adjustment in

equilibrium correction models of house prices. By raising borrowing costs, mortgage rates

increase the fraction of new and prospective borrowers in an area who are constrained by

their monthly debt service-to-income ratios. This effect speeds the adjustment of high house

prices back to their long-run fundamentals because it is more difficult for households to

borrow ever-increasing amounts to facilitate continued appreciation.

Future research in this vein could seek to estimate effects of interest rates more directly,

such as Gorea et al. (2022), who avoids the parameter saturation required in empirical panel

specifications. The need to account for residuals that are correlated across cross-sectional
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units makes it fundamentally difficult to estimate the total effect of interest rate changes in

panel frameworks.
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Figure 1: Mortgage Rates and Payment Constraints
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[MORTGAGE30US], retrieved from FRED, Federal Reserve Bank of St. Louis, accessed 9/27/2022. Debt

service-to-income ratio (DTI) is from internal FHFA data on Fanne Mae and Freddie Mac home mortgages,

and calculated as the share of purchase-money mortgage borrowers with a back-end DTI ≥ 43. The series

shown is the 50th percentile share across cities, calculated in each quarter.
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Figure 2: House Price Appreciation
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Figure 3: Time Series Statistics
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Figure 4: Estimates from City-Specific Cointegrating Regressions
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1
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Figure 5: Partial Effects of Mortgage Rate Changes on House Prices
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Notes: h-step estimates are based on the equation:
∂∆pt+h,t/∂rt = β̂p

1(α̂0ût + α̂1ûtDTI43pt )(rt − rt−1) ∗ 100. The superscript p indicates the percentile (in this

case, the 50th for both β̂1 and DTI43), and all α parameters are estimated in a new regression for each
horizon. Dotted lines indicate a 90% confidence interval, calculated analytically. The long-run estimate is
from the long-run cointegrating equation, and is calculated as the negative of the Pesaran and Smith
(1995) mean group estimate, or −100−1

∑100
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Figure 6: Partial Effects of Mortgage Rate Changes on House Prices by Initial Rate
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Figure 7: Partial Effects of Mortgage Rates on House Prices by DTI and Land Use Regulation
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The superscript p indicates the percentile, and all α parameters are estimated in a new regression for each

horizon. Dotted lines indicate a 90% confidence interval, calculated analytically.
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Figure 8: Partial Effects of Mortgage Rates on House Prices by Initial Disequilibrium
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−
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−
t )

)
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In this equation, u− has a value of 0 if u is positive or u otherwise, the superscript p indicates the

percentile, and all α and ζ parameters are estimated in a new regression for each horizon.

38 Larson — House Prices, Mortgage Interest Rates, and Payment Constraints



Table 1: Summary Statistics

Variable Name Type Units Mean SD 5th Pct. 50th Pct. 95th Pct. Source
P House price appreciation Panel log-difference*100 1.2 2.4 -2.7 1.3 4.8 Federal Housing Finance Agency
W Wages Panel log-difference*100 0.8 1.4 -0.4 0.8 2.1 Bureau of Labor Statistics
R Mortgage interest rate Series level % 5.3 1.5 3.1 5.0 7.8 Freddie Mac
K Debt service-to-income (DTI) Panel level %

DTI Level Panel level 35.1 2.6 31.1 34.9 39.8 Federal Housing Finance Agency
DTI36 DTI ≥ 36 Panel level % 48.1 9.9 32.6 47.5 65.5 Federal Housing Finance Agency
DTI43 DTI ≥ 43 Panel level % 23.5 9.3 9.8 22.9 40.0 Federal Housing Finance Agency

K̄ Payment constraint Series level % 37.9 2.0 34.6 37.8 41.4 Author’s calculations
B Maximum loan amount Panel log-difference*100 1.9 5.1 -6.2 2.8 9.2 Author’s calculations
û Disequilibrium Panel log-difference*100 0.2 15.2 -22.1 -0.6 27.6 Author’s calculations

Correlation matrix

P W R DTI DTI36 DTI43 K̄ B û

P 1.00 0.12 -0.12 -0.05 -0.01 -0.08 -0.12 0.01 0.08

W 0.12 1.00 0.05 0.04 0.03 0.02 -0.01 0.29 0.05

R -0.12 0.05 1.00 0.10 -0.15 0.10 -0.05 -0.07 0.19

DTI -0.05 0.04 0.10 1.00 0.95 0.96 0.77 -0.06 0.60

DTI36 -0.01 0.03 -0.15 0.95 1.00 0.91 0.72 -0.06 0.51

DTI43 -0.08 0.02 0.10 0.96 0.91 1.00 0.81 -0.05 0.61

K̄ -0.12 -0.01 -0.05 0.77 0.72 0.81 1.00 -0.08 0.66

B 0.01 0.29 -0.07 -0.06 -0.06 -0.05 -0.08 1.00 -0.11

û 0.08 0.05 0.19 0.60 0.51 0.61 0.66 -0.11 1.00

Note: Variables are described in the text. The sample consists of quarterly data between 1996Q1 and 2021Q4 for 100 large cities in the United States.
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Table 2: Disequilibrium Measure Encompassing Regressions

Estimated equation: ∆pit = ai + at + α1û1it ++α2û2it +
∑3

j=1 d1j∆pit−j+1 +
∑2

j=1 d2j∆bit−j + eit

Disequilibrium Measure ûit(b) ûit(y) ûit(y, r;unr.) ûit(y, r, k;unr.) ûit(y, r; rest.) ûit(b; 30yr) ûit(b;T10) ûit(b;CCE) ûit(b;CDP )
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Measure in Column -0.0381*** -0.0363*** -0.0334*** -0.0343*** -0.0365*** -0.0385*** -0.0362*** 0.0000495 -0.0248***
[0.00201] [0.00223] [0.00193] [0.00237] [0.00193] [0.00211] [0.00197] [0.000145] [0.00168]

RMSE 0.0147 0.0147 0.0148 0.0149 0.0147 0.0147 0.0147 0.0151 0.0148

(10) (11) (12) (13) (14) (15) (16) (17)
ûit(b) -0.0506*** -0.0562*** -0.0454*** -0.0360*** -0.0956*** -0.0306* -0.0384*** -0.0340***

[0.00622] [0.00517] [0.00276] [0.00914] [0.0209] [0.0142] [0.00202] [0.00274]

Measure in Column 0.0132* 0.0223*** 0.0122*** -0.00205 0.0594** -0.00733 0.000258 -0.00407*
[0.00583] [0.00525] [0.00354] [0.00883] [0.0212] [0.0136] [0.000130] [0.00169]

RMSE 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147 0.0147

Note: ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 0.1, 0.05, and 0.01 levels, respectively. Models 1 through 9 use a single
disequilibrium measure, noted in the column. Models 10 through 17 include the baseline estimate of û—based on
maximum loan amounts and estimated without augmented residuals—alongside an alternative measure, noted in the
column. All models are estimated using un-augmented residuals. All disequilibrium measures except the CCE measure
provide equilibrium correction as shown by estimates in models 1 through 9. Models 10 through 17 show the baseline û
measure encompasses all others, as the sign and significance is maintained while others become statistically
indistinguishable from zero or positive in sign.
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Table 3: Dynamic Models of House Prices

Dependent Variable: House Price (quarterly, log-differenced)

Model Number [1] [2] [3] [4] [5] [6] [7]
DTI Formulation Share ≥ 43 Mean Share ≥ 36 Share ≥ 43 Share ≥ 43 Share ≥ 43 Share ≥ 43
ûit 0.0338*** 0.101*** 0.0111 -0.00197 -0.0229*** 0.0959*** 0.0789***

[0.00369] [0.0201] [0.00600] [0.00486] [0.00488] [0.0112] [0.0123]

ûit ×DTI measure -0.224*** -0.00376*** -0.0896*** -0.123*** -0.0337* -0.362*** -0.300***
[0.0133] [0.000564] [0.0117] [0.0181] [0.0137] [0.0329] [0.0344]

û−
it -0.141*** -0.121***

[0.0129] [0.0145]

û−
it ×DTI measure 0.356*** 0.241***

[0.0473] [0.0572]

∆pit−1 0.132*** 0.0284 0.0297 0.0282 -0.0561* 0.0141 -0.0722**
[0.0294] [0.0273] [0.0275] [0.0272] [0.0266] [0.0266] [0.0263]

∆pit−2 0.369*** 0.330*** 0.330*** 0.331*** 0.268*** 0.317*** 0.248***
[0.0146] [0.0162] [0.0162] [0.0162] [0.0205] [0.0160] [0.0197]

∆pit−3 0.348*** 0.357*** 0.356*** 0.359*** 0.338*** 0.354*** 0.328***
[0.0243] [0.0184] [0.0185] [0.0182] [0.0170] [0.0181] [0.0173]

∆bit−1 0.0292*** 0.0301 0.0303 0.0311 0.0287 0.0293 0.0271
[0.00361] [0.0232] [0.0233] [0.0232] [0.0199] [0.0245] [0.0201]

∆bit−2 0.0335*** 0.0118 0.0120 0.0125 0.0124 0.0124 0.0118
[0.00288] [0.0127] [0.0127] [0.0127] [0.0127] [0.0146] [0.0130]

Time Period FEs No Yes Yes Yes No Yes No
City FEs Yes Yes Yes Yes Yes Yes Yes
CCE Controls No No No No Yes No Yes

Observations 10200 10200 10200 10200 10200 10200 10200
RMSE 0.0161 0.0145 0.0145 0.0145 0.0137 0.0144 0.0136

F-stat (∆bit−j coeffs sum = 0) 114.3 0.850 0.853 0.903 1.121 0.746 1.014
p-value (∆bit−j coeffs sum = 0) < 0.001 0.431 0.429 0.409 0.330 0.477 0.366
F-stat (each ∆bit−j coeffs = 0) 210.7 1.525 1.547 1.656 1.736 1.246 1.488
p-value (each ∆bit−j coeffs = 0) < 0.001 0.220 0.217 0.201 0.191 0.267 0.225
Residual Correlation 0.180 -0.007 -0.006 -0.007 -0.008 -0.006 0.001

Note: ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 0.1, 0.05, and 0.01 levels, respectively. Parameters
presented are estimates of coefficients from OLS regressions. The sample is a balanced panel of quarterly
data between 1996Q1 and 2021Q4. The variable p is a house price index, b is a maximum loan amount
index, and û is a measure of disequilibrium from a fundamental house price estimated in auxiliary models.
Parameters on û indicate reversion to long-run equilibrium, with larger (in magnitude) values indicating
faster convergence. Parameters on û×DTI indicate a speed of convergence associated with payment
constraints. A negative superscript takes the value of the series when negative and 0 otherwise. CCE
controls are means of left and right-hand side variables with loadings that vary by city (Holly et al., 2010).
Residual correlations are the average of all two-city residual correlations within time periods. All
correlations presented are significantly different than zero at the 1% level.
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Appendix
Figure A.1: Share of Enterprise Borrowers with DTI ≥ 43

(a) 1996 (b) 2001

(c) 2006 (d) 2011

(e) 2016 (f) 2021

Sources: Internal FHFA data.

Notes: County values are the share of first-lien home purchase loans with a back-end debt

service-to-income (DTI) ratio greater than or equal to 43%, averaged over the calendar year.
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Figure A.2: Payment constraints and land use regulation
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WRLURI values.
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Table A.1: Long-Run Regression Estimates

CBSA Name CBSA BASE CCE CDP CBSA Name CBSA BASE CCE CDP
Los Angeles-Long Beach-Glendale, CA 31084 0.78 -3.82 0.11 Bakersfield, CA 12540 0.47 1.76 -0.15
Honolulu, HI 46520 0.78 0.83 0.52 Pittsburgh, PA 38300 0.47 1.54 0.33
Austin-Round Rock-Georgetown, TX 12420 0.75 0.85 0.59 New Orleans-Metairie, LA 35380 0.47 0.57 0.23
Anaheim-Santa Ana-Irvine, CA 11244 0.74 3.92 0.19 Knoxville, TN 28940 0.47 -0.39 0.22
Boise City, ID 14260 0.68 3.84 0.10 Worcester, MA-CT 49340 0.46 3.86 -0.02
Miami-Miami Beach-Kendall, FL 33124 0.68 1.50 -0.03 Greenville-Anderson, SC 24860 0.45 1.76 0.24
San Diego-Chula Vista-Carlsbad, CA 41740 0.66 2.27 0.08 Charlotte-Concord-Gastonia, NC-SC 16740 0.45 -4.12 0.18
Philadelphia, PA 37964 0.66 4.53 0.34 Oklahoma City, OK 36420 0.44 0.32 0.29
Riverside-San Bernardino-Ontario, CA 40140 0.66 1.40 -0.18 Tucson, AZ 46060 0.44 1.45 -0.11
Oxnard-Thousand Oaks-Ventura, CA 37100 0.66 1.60 0.05 Minneapolis-St. Paul-Bloomington, MN-WI 33460 0.44 3.69 -0.02
Denver-Aurora-Lakewood, CO 19740 0.66 3.41 0.38 Wilmington, DE-MD-NJ 48864 0.44 2.54 0.08
Oakland-Berkeley-Livermore, CA 36084 0.65 1.47 -0.04 Camden, NJ 15804 0.44 6.43 0.02
Washington-Arlington-Alexandria, DC-VA-MD-WV 47894 0.65 2.60 0.24 El Paso, TX 21340 0.43 -0.90 0.23
San Francisco-San Mateo-Redwood City, CA 41884 0.64 0.34 0.30 Baton Rouge, LA 12940 0.43 1.09 0.29
West Palm Beach-Boca Raton-Boynton Beach, FL 48424 0.63 -1.26 -0.12 Raleigh-Cary, NC 39580 0.43 0.98 0.24
Fort Lauderdale-Pompano Beach-Sunrise, FL 22744 0.63 -0.88 -0.10 Syracuse, NY 45060 0.42 -0.09 0.23
Portland-Vancouver-Hillsboro, OR-WA 38900 0.63 1.26 0.26 Allentown-Bethlehem-Easton, PA-NJ 10900 0.42 1.39 0.03
Seattle-Bellevue-Kent, WA 42644 0.62 0.61 0.22 Las Vegas-Henderson-Paradise, NV 29820 0.41 -1.07 -0.58
Tacoma-Lakewood, WA 45104 0.61 0.81 0.07 Atlanta-Sandy Springs-Alpharetta, GA 12060 0.40 2.20 -0.02
Houston-The Woodlands-Sugar Land, TX 26420 0.61 0.35 0.47 Bridgeport-Stamford-Norwalk, CT 14860 0.40 1.96 0.03
Charleston-North Charleston, SC 16700 0.60 0.84 0.19 Kansas City, MO-KS 28140 0.40 -1.52 0.07
Nassau County-Suffolk County, NY 35004 0.60 0.81 0.12 Tulsa, OK 46140 0.40 -0.70 0.23
Tampa-St. Petersburg-Clearwater, FL 45300 0.59 -1.22 -0.07 Louisville/Jefferson County, KY-IN 31140 0.39 -0.08 0.19
Salt Lake City, UT 41620 0.58 5.70 0.29 Albuquerque, NM 10740 0.39 1.52 0.13
San Antonio-New Braunfels, TX 41700 0.58 -0.94 0.42 Grand Rapids-Kentwood, MI 24340 0.39 4.76 0.02
Phoenix-Mesa-Chandler, AZ 38060 0.58 -3.40 -0.11 New Haven-Milford, CT 35300 0.39 7.12 -0.01
Dallas-Plano-Irving, TX 19124 0.58 0.39 0.36 St. Louis, MO-IL 41180 0.39 0.28 0.07
San Jose-Sunnyvale-Santa Clara, CA 41940 0.57 0.66 0.20 Columbus, OH 18140 0.38 -2.87 0.11
New York-Jersey City-White Plains, NY-NJ 35614 0.57 1.87 0.17 Milwaukee-Waukesha, WI 33340 0.38 0.80 0.03
Frederick-Gaithersburg-Rockville, MD 23224 0.57 4.85 0.17 Birmingham-Hoover, AL 13820 0.38 -0.83 0.10
Sacramento-Roseville-Folsom, CA 40900 0.57 0.60 -0.16 Rochester, NY 40380 0.37 0.78 0.22
Nashville-Davidson–Murfreesboro–Franklin, TN 34980 0.57 4.83 0.31 Indianapolis-Carmel-Anderson, IN 26900 0.37 3.61 0.15
North Port-Sarasota-Bradenton, FL 35840 0.55 0.38 -0.19 Wichita, KS 48620 0.37 -0.93 0.17
Boston, MA 14454 0.54 1.76 0.15 Hartford-East Hartford-Middletown, CT 25540 0.36 3.06 0.08
Cape Coral-Fort Myers, FL 15980 0.54 0.59 -0.30 Omaha-Council Bluffs, NE-IA 36540 0.36 2.60 0.14
Orlando-Kissimmee-Sanford, FL 36740 0.54 -0.80 -0.18 Columbia, SC 17900 0.36 -0.56 0.12
Baltimore-Columbia-Towson, MD 12580 0.54 9.88 0.16 Little Rock-North Little Rock-Conway, AR 30780 0.35 0.82 0.21
Fort Worth-Arlington-Grapevine, TX 23104 0.54 -2.89 0.31 Gary, IN 23844 0.34 -0.14 0.09
Jacksonville, FL 27260 0.53 0.87 -0.06 Cincinnati, OH-KY-IN 17140 0.30 0.87 0.03
Richmond, VA 40060 0.52 1.67 0.16 Chicago-Naperville-Evanston, IL 16984 0.30 1.59 -0.15
Cambridge-Newton-Framingham, MA 15764 0.52 1.22 0.16 Winston-Salem, NC 49180 0.29 -0.72 0.07
Colorado Springs, CO 17820 0.51 0.23 0.18 Memphis, TN-MS-AR 32820 0.29 -1.11 0.02
Fresno, CA 23420 0.51 2.59 -0.16 Greensboro-High Point, NC 24660 0.29 0.90 0.06
Providence-Warwick, RI-MA 39300 0.51 0.13 0.00 Dayton-Kettering, OH 19430 0.24 3.08 -0.06
Virginia Beach-Norfolk-Newport News, VA-NC 47260 0.50 5.37 0.15 Warren-Troy-Farmington Hills, MI 47664 0.23 0.22 -0.14
Buffalo-Cheektowaga, NY 15380 0.50 2.27 0.36 Elgin, IL 20994 0.21 0.08 -0.27
Montgomery County-Bucks County-Chester County, PA 33874 0.49 4.05 0.17 Akron, OH 10420 0.21 0.21 -0.06
Newark, NJ-PA 35084 0.49 -1.72 0.05 Lake County-Kenosha County, IL-WI 29404 0.19 -0.47 -0.19
Albany-Schenectady-Troy, NY 10580 0.49 -4.32 0.25 Cleveland-Elyria, OH 17460 0.18 2.48 -0.11
Stockton, CA 44700 0.48 -1.78 -0.41 Detroit-Dearborn-Livonia, MI 19804 0.14 5.43 -0.37

Estimates are from city-by-city estimates of βi1 in pit = βi0 + βi1bit + uit. The BASE model estimates this
model as written. The CCE model includes the common correlated effects controls from Holly et al. (2010).
The CDP model includes the common dynamic process control from Teal and Eberhardt (2010).
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