Temporary Unemployment and Labor Market Dynamics During the COVID-19 Recession

Jessica Gallant
University of Toronto

Kory Kroft
University of Toronto and NBER

Fabian Lange
McGill University and NBER

Matt Notowidigdo
University of Chicago Booth School of Business and NBER

February 23, 2021
Motivation

The COVID-19 recession is a very unusual recession:

- Record-shattering UI claims, extremely rapid increase in the unemployment rate (u)
- Increase in u much larger than corresponding drop in job vacancies - “breaking” the Beveridge curve
The COVID-19 recession is a very unusual recession:

- Record-shattering UI claims
- Extremely rapid increase in the unemployment rate (u)
- Increase in u much larger than corresponding drop in job vacancies - "breaking" the Beveridge curve

This paper focuses on one specific way the COVID-19 recession stands out: the sharp increase in temporary unemployment.
Motivation

The COVID-19 recession is a very unusual recession:

- Record-shattering UI claims, extremely rapid increase in the unemployment rate (u)
- Increase in u much larger than corresponding drop in job vacancies - “breaking” the Beveridge curve
- Typically, recessions begin with large increase in separations followed by low job finding rates, but job finding rates have remained relatively high during the COVID-19 recession

This paper focuses on one specific way the COVID-19 recession stands out: the sharp increase in temporary unemployment
Outline

- Related literature
- Data
- Motivating figures
- Search-and-matching model
- Calibration results
- Conclusion
Related literature

- BPEA papers on dynamics of recessions: **Elsby, Hobijn, Sahin (2010 BPEA)** and Elsby et al. (2011 BPEA)

- COVID-19 labor market dynamics papers: **Chodorow-Reich and Coglianese (2020)**, **Gregory, Menzio, Wiczer (2020)**, **Bick and Blandin (2020)**

- Additional COVID-19 papers: **Bartik et al. (2020a,b)**, **Goolsbee and Syverson (2020)**, **Barrero et al. (2020)**
Related literature

- BPEA papers on dynamics of recessions: Elsby, Hobjin, Sahin (2010 BPEA) and Elsby et al. (2011 BPEA)

Additional COVID-19 papers: Bartik et al. (2020a,b), Goolsbee and Syverson (2020), Barrero et al. (2020)
Related literature

- BPEA papers on dynamics of recessions: Elsby, Hobjin, Sahin (2010 BPEA) and Elsby et al. (2011 BPEA)

- Additional COVID-19 papers: Bartik et al. (2020a,b), Goolsbee and Syverson (2020), Barrero et al. (2020)
Monthly Current Population Survey (CPS) data between January 2001 - August 2020, using both cross-sectional and matched panel

- Measure “stocks” each month of labor market states: employed \((E)\), temporary unemployment \((T)\), permanent unemployed \((P)\), and non-participation \((N)\)

- Temporary unemployed classified as either “waiting” \((T^W)\) or “actively searching” \((T^A)\)

- Drawing on Forsythe et al. (2020a,b), BLS guidance, and our analysis, we define stock of \(T^W\) to include employed workers who are “absent for other reasons” and unpaid

- Estimate month-to-month transition rates in a way that imposes consistency across measured stocks each month following Kroft et al. (2016)

Job vacancies measured using JOLTS
Motivating figures: Unemployment rate (u)

Panel A: Full Sample

Panel B: August 2019 to August 2020

Seasonally adjusted
Motivating figures: Unemployment rate (u)

Panel A: Full Sample

Unemployment rate

Panel B: August 2019 to August 2020

Seasonally adjusted
Job vacancies (V)

Panel A: Full Sample

Vacancies (JOLTS), thousands

Panel B: July 2019 - July 2020

Seasonally adjusted
Job separation rates E-to-U

Panel A: Full Sample

Panel B: July 2019 to July 2020

- Black circle: Probability unemployed this month if employed last month
- Blue square: Probability permanent unemployed this month if employed last month
- Red diamond: Probability temporary unemployed this month if employed last month
Temporary unemployed share, $T/(P + T)$

Panel A: Full Sample
Share of unemployed who are temporary unemployed

Panel B: August 2019 to August 2020
Seasonally adjusted
Panel A: Job finding rate of temporary unemployed

Panel B: Job finding rates of permanent unemployed and all unemployed
Negative duration dependence for \(T \) and \(P \)

Job finding rate

Unemployment duration (months)

- Permanent unemployed
- Searching temporary unemployed
Main endogenous objects: job finding rates for $P(d)$, $T(d)$, N

Exogenous ("forcing") variables: job separation rates, transition rates between non-employment categories, recall rates for T^W

Job finding rate (JFR) determined by matching model:

$$\frac{M(S_t, V_t)}{S_t} = m_0 x_t^{1-\alpha}, \text{ where } x_t = \frac{V_t}{S_t}$$

For $P(d)$, JFR is:

$$\lambda_t^{P(d)\to E} = \text{Prob}(E_t|P_{t-1}(d)) = A(d)m_0x_t^{1-\alpha}$$

For N, JFR is:

$$\lambda_t^{N\to E} = \text{Prob}(E_t|N_{t-1}) = sm_0x_t^{1-\alpha}$$
Job finding rates for T^W and T^A

- Job finding rate for $T^A(d)$ is:

\[
\lambda_t^{T^A(d)\rightarrow E} = \pi \lambda_t^{T^W\rightarrow E} + (1 - \pi \lambda_t^{T^W\rightarrow E}) \lambda_T^{P(d)\rightarrow E}
\]

- Total search effort given by:

\[
S_t = \bar{P}_t + (1 - \pi \lambda_t^{T^W\rightarrow E}) \bar{T}_t^A + sN_t
\]

\[
\bar{P}_t = \sum_{d=1}^{D} A(d) P_t(d)
\]

\[
\bar{T}_t^A = \sum_{d=1}^{D} A(d) T_t^A(d)
\]
Calibration

1. Estimate stocks and transition rates using CPS data

2. Estimate duration dependence function $A(d)$ using 2001-2019 data; assumed to be stable over time and the same for $T^A(d)$ and $P(d)$

3. Estimate remaining model parameters using minimum distance on 2001-2019 data

4. In both (2) and (3) find very similar estimates to Kroft et al. (2016), which used only pre-2008 data. Suggests that the matching model parameters and duration dependence parameters are fairly stable over time
Job finding rates in-sample and out-of-sample

Job Finding Rates for Unemployed: Baseline Model

U-to-E observed U-to-E predicted
Comparing to model without temporary unemployment

Job Finding Rate of Unemployed

- Observed
- Baseline Model
- Single Unemployment State
Baseline vs. model without temporary unemployment

Unemployment Rate

- Counterfactual begins with observed forcing variables
- Continues with simulated forcing variables

- Observed
- Baseline Model
- Single Unemployment State
Baseline vs. model without temporary unemployment

Unemployment Rate

Counterfactual begins with observed forcing variables

Continues with simulated forcing variables

- Observed
- Baseline Model
- Single Unemployment State

- CBO 2020Q4
- Fed SEP & Blue Chip 2020Q4
- Fed SEP Optimistic 2020Q4
- CBO 2021Q4
- Fed SEP 2021Q4
Summary of calibration results

- We find that u declines more rapidly compared to a model without T/P distinction & compared to forecasts.

- To match earlier professional forecasts, need a “U-turn” in trends in job separations, or substantial reductions in vacancies and the recall rate for T.

- Results consistent with small share of workers reporting that “jobs are hard to get” \Rightarrow jobs may not have been “scarce” for the unemployed workers actively searching for a job.
Conclusions

- The COVID-19 recession is unusual: job finding rates usually fall during recessions following a rapid inflow into unemployment (Elsby et al. 2010) but job finding rates remained relatively high.

 Our model indicates temporary unemployment is an explanation.

- Calibrated model suggests focusing somewhat less on the “headline” unemployment rate as a measure of labor market slack - instead, more useful to look at composition of unemployed, alongside vacancies and job separations.
Panel A: Full Sample

Vacancies (JOLTS), thousands

Panel B: December 2019 to December 2020

Seasonally adjusted, in thousands
Panel A: Full Sample

Share of unemployed who are temporary unemployed

Panel B: December 2019 to December 2020

Seasonally adjusted
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacancies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,108</td>
<td>5,857</td>
<td>5,305</td>
<td>5,222</td>
<td>5,843</td>
<td>7,036</td>
<td>6,491</td>
<td>6,639</td>
<td>7,053</td>
<td>6,320</td>
</tr>
<tr>
<td>E to N</td>
<td>0.023</td>
<td>0.018</td>
<td>0.053</td>
<td>0.041</td>
<td>0.024</td>
<td>0.023</td>
<td>0.029</td>
<td>0.029</td>
<td>0.016</td>
<td>0.020</td>
</tr>
<tr>
<td>E to T</td>
<td>0.005</td>
<td>0.021</td>
<td>0.140</td>
<td>0.037</td>
<td>0.018</td>
<td>0.018</td>
<td>0.011</td>
<td>0.010</td>
<td>0.010</td>
<td>0.009</td>
</tr>
<tr>
<td>E to P</td>
<td>0.006</td>
<td>0.006</td>
<td>0.010</td>
<td>0.006</td>
<td>0.007</td>
<td>0.006</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.005</td>
</tr>
<tr>
<td>T to P</td>
<td>0.112</td>
<td>0.374</td>
<td>0.147</td>
<td>0.034</td>
<td>0.050</td>
<td>0.037</td>
<td>0.093</td>
<td>0.135</td>
<td>0.124</td>
<td>0.113</td>
</tr>
<tr>
<td>T to N</td>
<td>0.181</td>
<td>0.536</td>
<td>0.568</td>
<td>0.144</td>
<td>0.128</td>
<td>0.122</td>
<td>0.130</td>
<td>0.202</td>
<td>0.183</td>
<td>0.212</td>
</tr>
<tr>
<td>P to N</td>
<td>0.403</td>
<td>0.374</td>
<td>0.642</td>
<td>0.420</td>
<td>0.323</td>
<td>0.234</td>
<td>0.433</td>
<td>0.216</td>
<td>0.241</td>
<td>0.214</td>
</tr>
<tr>
<td>P to T</td>
<td>0.017</td>
<td>0.029</td>
<td>0.088</td>
<td>0.051</td>
<td>0.119</td>
<td>0.124</td>
<td>0.057</td>
<td>0.128</td>
<td>0.056</td>
<td>0.031</td>
</tr>
<tr>
<td>N to P</td>
<td>0.055</td>
<td>0.049</td>
<td>0.047</td>
<td>0.048</td>
<td>0.074</td>
<td>0.052</td>
<td>0.073</td>
<td>0.043</td>
<td>0.051</td>
<td>0.048</td>
</tr>
<tr>
<td>N to T</td>
<td>0.004</td>
<td>0.009</td>
<td>0.032</td>
<td>0.058</td>
<td>0.046</td>
<td>0.037</td>
<td>0.023</td>
<td>0.035</td>
<td>0.012</td>
<td>0.015</td>
</tr>
<tr>
<td>Share of T</td>
<td></td>
</tr>
<tr>
<td>searching</td>
<td>0.181</td>
<td>0.177</td>
<td>0.114</td>
<td>0.161</td>
<td>0.233</td>
<td>0.271</td>
<td>0.326</td>
<td>0.401</td>
<td>0.421</td>
<td>0.399</td>
</tr>
<tr>
<td>Job finding rate of T^W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.642</td>
<td>0.457</td>
<td>0.800</td>
<td>0.373</td>
<td>0.448</td>
<td>0.397</td>
<td>0.367</td>
<td>0.448</td>
<td>0.444</td>
<td>0.551</td>
</tr>
</tbody>
</table>